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Kanji-to-Hiragana Conversion Based on
a Length-Constraine&v-Gram Analysis

Joseph Piconesenior Member, IEEETom Staples, Kazuhiro Konddjember, IEEE, and Nozomi Arai

Abstract—A common problem in speech processing is the
conversion of the written form of a language to a set of phonetic
symbols representing the pronunciation. In this paper, we focus
on an aspect of this problem specific to the Japanese language.
Written Japanese consists of a mixture of three types of symbols:
kanji, hiragana, and katakana. We describe an algorithm for
converting conventional Japanese orthography to a hiragana-like
symbol set that closely approximates the most common pronun-
ciation of the text. The algorithm is based on two hypotheses:
1) the correct reading of a kanji character can be determined
by examining a small number of adjacent characters and 2)
the number of such combinations required in a dictionary is
manageable.

The algorithm described here converts the input text by select-
ing the most probable sequence of orthographic unitsi{-grams)
that can be concatenated to form the input text. In closed-
set testing, then-gram algorithm was shown to provide better
performance than several public domain algorithms, achieving
a sentence error rate of 3% on a wide range of text material.

Conventional Orthography:
BIEEpO22-3~7 4 TiTEELE,
Conversion to Hiragana:
BB o Za-3-7 3T fRElh,
- — —
kaniji katakana

beLid BI&s) B Re—-d-C 3T WEdLE,

Romanized Text:

hiragana

Watashi wa fokyo kara nyu yoku made ikimashita.
English Translation:
| went from Tokyo to New York.

Though the focus of this paper is written Japanese, the pattern rig 1. Example demonstrating the process of converting conventional or-
matching algorithm described here has applications to similar thography to hiragana. A romaji transcription (transliteration of Japanese
problems in other languages. words into Roman letters) and an English translation are also shown.

Index Terms—Natural language interfaces, speech recognition,

speech synthesis. have found applications in the development of phonetically

balanced sentence sets [2], [3] and in the evaluation of speech
recognizers [4]. The algorithm described in this paper, in
|. INTRODUCTION fact, was used to develop a database of 10000 phonetically

COMMON problem in speech processing is the coralanced sentences for a Japanese speech database project [5].
Aversion of a written language to a set of phonetic .
symbols. Such algorithms are often called letter-to-sound rules Overview of Japanese Orthography

in English, and are commonly a core component of a text-to-The Japanese writing system is logographic: each character
speech synthesis system [1]. More recently, as interest in lajg&nhe writing system, referred to as a grapheme, can denote
vocabulary speech recognition has grown, and speech daff-or part of a word. The conventional writing system [6],
base projects have become more ambitious, such algoritl"lryl]sconsists of a mixture of three types of symbblkanii,
hiragana, and katakana. Kanji symbols, adapted from the
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go”), shown in Fig. 1, contain a mixture of kanji characterbmited to about 125 characters. Hiragana does not map directly
indicating the base form (“iku”) or verb stem and hiragant pronunciation—some amount of additional processing is
characters representing the verb conjugation (past tense). Plaegiired. However, hiragana is a representation that is quite
names of foreign cities (and other foreign words), such as “nglose to the actual pronunciation, and therefore is very useful
yoku” (“New York”) are written in katakana. for measuring the complexity of the underlying sounds in a
In Japanese orthography, the words within a sentence gf@en segment of text.
not normally delimited with a space or some other marker {0 One distinguishing aspect of Japanese is that all written text
indicate a word or phrase boundary. Only sentence boundaigs be converted to hiragana with no loss in information about
are delimited. Conceptually, we must segment the text prigfe pronunciation, though it is possible that there might be
to converting each group of graphemes to their meaning gme |oss in understanding. An example of such a conversion
pronunciation. In Fig. 1, the correct segmentation of the t€4 opown in Fig. 1. Another rather distinguishing aspect of
is also given. Automatic segmentation is one challenge H&panese orthography [6], [12] is that the correct translation

machine processing .Of Japanese text. . of a kanji character depends on the context in which it
In most formal writing (e.g., newspapers, magazines, busi-

2 o appears. Each kanji character normally has several common
ness letters, and electronic media) it is recommended that Gse J y

of kanji characters be restricted to a national standard Sr%?dmgs and must be disambiguated by examining the context

referred to asdyo kaniji (“everyday kaniji”). This set containsM which the character occurs. In other logographic systems,

1945 characters [6] and can be regarded as the core kéhlﬁ:h as Chinese, more kanji-like characters are useq,. but the
set that an average reader is expected to read easily. To tﬁ@@slatloqs of each cha_rapter are less context sensitive, and
the magnitude of the problem somewhat in perspective, tﬁé:c_)ntext—mdependent dictionary lookup procedure appears to
average college undergraduate can read about 3000 characBs&ce.
and a good dictionary contains about 12 000 characters [8]. Inin this paper, we describe an algorithm for converting
this paper, we will be most concerned with the accuracy 6pnventional Japanese orthography to a hiragana-like symbol
algorithms on text composed only of characters within tHget that closely approximates the most common pronunciation
joyo set. Characters outside of this set most often must 6kthe text. The algorithm is based on two hypotheses: 1)
handled as special cases. the correct reading of a kanji character can be determined

On the other hand, two more extensive character sets héyeexamining a small number of adjacent characters and 2)
been introduced as an electronic representation for modéne number of such combinations required in a dictionary is
day computing environments. These representations servenanageable.
function similar to the ASCII character set—they provide a This algorithm selects an optimal translation of the text by
means to store text in a machine independent format. Theynstructing the most probable sequence of graphemes that
are both supersets of theyp list and define conventions forcan be concatenated to form the input text. Comprehensive
representing kanji characters outside of tbgalkanji list. ~  dictionaries have been developed that contain karjrams

The first of these two sets is known as the 8-b Japan IndusfRyixtures of kanji and hiragana are also used) and their
Standard (Shift-JIS) [9] character set. Shift-JIS is found ONffagana-like translations (implemented using ASCII codes).
wide variety of computing platforms and electronic media. Fafe accuracy of the algorithm is extremely dependent on the

example, shift-JIS is supported within the Japanese languaggjity of thesen-gram dictionaries (discussed in Section I1).
extensions to the popular X11 Window System [10] (available o+ general philosophy in this work is to favor algorithmic

on most'UNI.X workstations). The second get tends to ké"f’mplicity over CPU or memory efficiency. This is based on
used mainly in the Japanese Language Environment for S

: . . . observation that computer memory and CPU speed are
workstations (and associated third party tools), and is known . . . 2 .
increasing at a rapid pace. Online dictionaries once thought

as the Extended Unix Code (EUC) [11] character set. Its mayn . .

. o : be too large to be practical can now be routinely stored
feature is that it is a multibyte character set (one, two, an hvsical duri . o his |
three byte sequences are currently supported), and suppI 18 >;|S|c3. tmemor{) ur:jng pdrocessmg.. tur a_lpproa;:h |sﬂ|1n-
both conventional ASCII text and Japanese orthography withi rently dictionary-based and memory Intensive, rather than
the same character set rule-based. A major design goal was to develop a system

Both of these character sets contain about 7000 charact&ff@t can be easily improved by a novice. Modifications of
It is easy to encounter text sources, such as electronic bo§§-based systems often require extensive forethought and
and encyclopedias, that make extensive use of the Tym-j expertise in natural language processing, and historically have
characters in these character sets. In electronic informatf@€n difficult to maintain. o _ _
processing today, there is significant pressure to restrict usag&everal such systems already exist in the public domain.
of kaniji to characters within these sets. Hence, these charadfeSection IV, we compare performance to three public do-
sets play an important role in the development of the temiain algorithms: Japanese University Morphemic Analysis

processing algorithm described in this paper. (JUMAN) [13], Wnn [14], and KAKASI [15]. Each of these
_ ) algorithms contains a mixture of rules and exception dictio-
B. A Simple Pattern Matching Approach naries (not well documented in the accompanying literature).

One of the reasons hiragana is an extremely useful rdpach system is fairly limited in the amount of Japanese text
resentation of the written language is that its character setttigt can be accurately processed. In each case, extension of the
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—in

a u e 0 ya yu ye yo wa wi we wWo
7T 4 v T F ¥ - A= 3 7 74 Iz IF
ka ki ku ke ko kya kyu kye kyo kwa kwi kwe kwo
X 2 o 4 vy Fa2 Fzr Fa 2y 24 Jx 7*
sa shi su se so sha shu she sho Swa swi swe SWO
/A S 4 ¥ Yz Yx 3 Ay A4 Az AF
ta chi tsu te to cha chu che cho tsa tsi tse tso
g F 2V 7 b F¥ Fz Fz Fa Jro V4 V= Ux
na ni nu ne no nya nyu nye nyo nwa nwi nwe nwo
F = X *x / Zx a2 Iz == Xy X4 RXx X
ha hi hu he ho hya hyu hye hyo fa fi fe fo
AN A t¥y tax Ex k= 77 74 T= T7*
m m m me mw mya myu mye myo mia mi e o
2 3 A X % = T2 Zx = VY S N SN )
ra ri ru re ro rya ryu rye ryo rwa rwi rwe rWo
7 U N v oo Y¥ Yz VYUx Yz by s x I
ga g g ge go gya gyu gye gyo gwa gwi gwe £Wo
X 7y I ¥y X2 Xz X3 Ty 1 Tz Tx
za ji zu ze zo ja ju je jo Zwa zwi e ZWO
¥ Y X ¥ v Uy Vi Yz V= Xy X4 Xz X
da di du de do dya dyu dye dyo dwa dwi dwe dwo
¥ T4 Fy F F F¥ Fa2 Tz TFTa Fur Fys4 Fox Fox
ba bi bu be bo bya byu bye byo bwa bwi bwe: biwo
N v 7 X K Exy Yz Ex Ea Ty T4 Tz Tx
pa Pl pu pe po pya pyu pye pYo pwa pwi pwe pwo
N ¥ 7T R OFR Fy VY2 YFx Es I T4 Tx Tx

ti tu tya tyu tye tyo twa twi twe two

T4 b ¥ T2 Tx T3 by7 by4 bvx bux
va vi wvu ve vo vya vyu vye vyo via vwi vie VIO
Ve 4 Tx T vy o Tx Fa oy Fos Tox Tox

fu fya fyu fye fyo
7 7% T2 T4x T3

zi dji dzu ng oo q

x4 F U v 7 4

Note: Each symbol ending in a vowel has a long vowel counterpart. For example, “o” has a corresponding entry
“o@” which is output for the long vowel o.

Fig. 2. List of output symbols used in kanji-to-hiragana conversion is displayed. Each row containing a set of ASCIlI symbols is followed by a row
containing the definition of the symbol in katakana (use of katakana in such a table is more standard). A dictionary entry contains three fields: a kaniji
n-gram sequence, a sequence of these ASCII symbols representing its reading, and a weight.

system is nontriviaf. Hence, we perceived a need to developsing one large dictionary. In practice, we find it much easier

a new and simpler system based on statistical methods ttwatnaintain a separate dictionary for eactgram order (kanji

would handle a diverse range of Japanese text. character sequence length). The system described in this paper
In the next section, we give an overview of the dictionargurrently uses nine dictionaries containinggrams of length

design and summarize the current state of the dictionariesie to nine.

Next, we discuss the basic parsing algorithm used to locate thé\n entry in the dictionary contains three essential fields:

best combination of patterns in the dictionary. Of course, thiee kanji sequence, its associated hiragana-like translation, and

dictionary design and parsing algorithm are highly interrelated. weight or probability of occurrence. We will refer to the

In the last part of this paper, we present the results of somigagana-like translation as its reading in order to maintain

comparative evaluations on two text databases, and discasasistency with the literaturfe.Currently, we use ASCII

some of the limitations of the system. representations for these symbols. Our present symbol set was
derived from an ASCII hiragana symbol table suggested by the
. N-GRAM DICTIONARY OVERVIEW Japan Electronic Industry Development Association (JEIDA)

] ) [16]. The entire symbol set is shown in Fig. 2.
We have decomposed the conversion problem into tWowe have faithfully followed the JEIDA standard except for
steps: dictionary design and sentence parsing. In this sectigRe significant modification. We have extended the represen-

we discuss the problem of dictionary design. Two majqation to explicitly model long vowels—syllables ending in
constraints on the dictionary design were that a dictionary
must be S|mple to constructand a dICtlonary must be eXtremel)gCIearly, in many cases (such as those described in the next paragraph)

easy to augment. Conceptually, the system can be viewedRSyictionary entries reflect pronunciation. However, the term “reading” is
adopted because it is more commonly found in textbooks and dictionaries
2KAKASI, the latter system, appears to be the easiest to extend, thougliéaling with the writing system, and conversion from kaniji to pronunciation
is not completely clear from the documentation what interactions are betweaanolves, at least conceptually, first determining the correct reading of the
the dictionary entries and the parser. character.
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long vowels are marked with a “@” symbol. For example, n-gram order = 1
“okii” (the Japanese adjective for “big”) is translated to “o@ % a 1.00
ki@.” The major motivation for this change was based on [P i 1.00
some pronunciation considerations. v a 1.00
Vowel duration is important in spoken Japanese. There are at A i 1.00
least three types of vowel durations. There are short vowels, peos
A ) = ga ku 1.00
such as “0” in “hon.” These are mapped to the appropriate us| e ng 1.00
symbols shown in Fig. 2. Long vowels, such @3 in “okii" w e ng 1.00
are output as the vowel followed by an “@” (e.g., “0@"). T ka wa 1.00
Sometimes two successive vowels in a word internal position Y0 0.01
will be pronounced as a single long vowel. In this case, the % JYO O-Ol
“@" symbol is also used. Hence, the “ii” in “okii” is output ¢ ’
as “i@” since it is normally pronounced as™ ie3 EUC 0.01
Finally, there are situations where two consecutive vowels ] EUC 0.01
will be pronouncetias two separate vowels. In this case, two
vowels will be output (i.e., two short vowels such as “ii” or a n-gram order = 2:
long vowel/short vowel combination such as “o@ 0"). Multi- e el yue 2.01
ple consecutive vowels tend to occur across word boundaries £y ka i sha 2.01
or in long vowel/short vowel contexts within words. We have #E=L ka ku 2.01
used an explicit representation of the various vowel contexts ]
anticipating that differentiation of these contexts might be ”Tg,iam order = 3: )
useful in subsequent speech recognition research. Tf\%& ka bu ki 3.02
The general pattern used to describe each entry in the BR% taberu - 3.0
dictionary is mEWv omoshi roi 3.02
K™k (k] — b2, (1) cidionary enty sontans the Kan-aram, the iraganacike mapping. and a

. . weight.
where then-gram order,N, is defined as 9

N=m+n+l (2) by analyzing the statistics of a large text database [5]. We

I represents a kaniji characten, and! represent the number Were anticipating the use of probal_)ilities to re_solve ambiguities
of characters preceding and following the context of interegtNd {0 “learn” the most common interpretation of a character
and represents the number of characters within the coritext.Séquence. More complex statistical models along these lines
represents the output sequence of hiragana characters defii@¢ Peen tried elsewhere [17], [18], but it is unclear as to
by this n-gram entry. the impact that contlnuous-valged probab|I|t|es_ have played in
Left and right context are optional. This is indicated in (2§1€ System accuracy (clearly binary valued weights have some
by the square brackets surroundikg and k'. Of course, Vvalue). _ _
it would be convenient if only context independent entries 10 our surprise, we found that several simple rules for
were required. For a significant percentage of entries (e. §signing weights to dictionary entries were sufficient. First,
proper nouns), this is clearly the case. The largest percentgg% nominal weight associated with angram is linearly
of entries, however, use right context to define the IorOIOgfoportional to its length. In our case, each character has a
reading. Right context is most often an adjacent set of kaﬁﬁ)minal weight equal to 1.0. Second, when ambiguities occur,
characters, and commonly a mixture of kaniji and hiragana fargrams of higher order are preferred over combinations-of
higher ordem-grams. Occasionally left context is used, mainl@grams of lower orders. For example, from Fig. 3, the nominal
in defining hiragana to kanji transitions. Such transitions aéeight for a 3-gram is slightly higher than any permissible
often useful for characters that might have a few commd@mbination of 1-grams and 2-grams.
readings that are strongly correlated with their function in Third, n-grams containing all kanji entries are preferred over
the sentence. Sometimes, this can be isolated by examinﬁ%ﬁbi”ationS of hiragana and kanji. Sometimes, a sequence of
neighboring hiragana characters. a hiragana character followed by two kanji characters can be
Though (1) appears to make a dictionary entry look confiterpreted in multiple ways—a 1-gram followed by a 2-gram
plicated, each entry is in fact very simple. Samples from ti¥ Vice-versa. Adjusting the weights of thegrams containing
dictionaries fom-grams of order one, two, and three are showd! kanji characters has proven to be an effective way to make
in Fig. 3. Each entry consists of asrgram coded using an Sure the sequence is segmented properly.
EUC representation, an ASCII mapping, and a weight. Observe that in Fig. 3, the last four entries in the 1-gram
Initially, we expected the weight for a dictionary entry toset are tagged as “JYO” or “EUC,” and the weights of these

be probabilistic. We planned to compute these probabiliti€gtries are less than the nominal weight of a single character
) L (1.0). This was introduced as a diagnostic measure. Some
40f course, there are no absolutes in such situations. The system

will
output consecutive vowels only if we are confident they will be pronounc&baramer_s shOUI_d never l?e translated as a _1'gr?m because
as separate vowels. Our bias is output long vowel symbols when in doubitheir reading is highly ambiguous. Characters in this category
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1-gram dictionary: TABLE |
SUMMARY OF THE CURRENT DICTIONARY SizES. THESE DICTIONARIES HAVE
E tsu ba sa 100 BEEN DESIGNED TO COVER TEXT RESTRICTED TOJOYO KANJI AND SOME

CommoN EUC CHARACTERS THE LAST COLUMN SHows THE NUMBER OF

2-gram dictionary: ENTRIES ACTUALLY USED WHEN PROCESSING A910 000 &NTENCE DATABASE

H#E  uyoku 2.01
& sa vo ku 2.01 N-Gram Number of Number of
Order Entries Active Entries
Fig: 4. Example of a ka_nji character_ that requires_ entri(_es in multiple dictio- i 6,506 5,378 (83%)
naries to completely define the possible contexts in which the character can 2 68407 43,070 (63%)
occur. In this case, a default reading covering the most common interpretation 3 3 . :
) . e o ; 4 7,116 18,972 (51%)
is used in the -gram dictionary. The -gram dictionary is used to define the
- 4 21,242 11,221 (53%)
exceptions.
5 10,316 3,780 (37%)
6 1,737 744 (43%)
that fall within the pyo joyo set are tagged with the symbol ; 3;; 122 Egg;";
“JYO.” Characters that fall outside the set are tagged with the 3 55 14 (64%)
symbol “EUC.” Because the weights of these entries are set Total 145,753 83,427 (57%)

to be lower than all other 1-gram entries, these entries will
only be used when there are no other choices (the character
essentially falls through the cracks in the system). This is anOne might wonder how many of these entries are actually
important diagnostic tool for determining cases for which theeeded. This is hard to determine. The tails of the distribution
dictionaries need to be improved. in a text database tend to be large. Unless one processes vast
Finally, and most importantly, we need to discuss th@mounts of data from numerous diverse sources, one cannot
rationale for adding a dictionary entry. Thegram dictionaries be sure of the effectiveness of a given entry. We conducted a
are explicitly one-to-one mappings: eactgram has only one simple experiment in which we processed a text database of
entry in a dictionary. Usually, a character that has a domin®0 000 sentences chosen from a wide range of text sources
reading is entered into the 1-gram dictionary. Unfortunatelfg]. An analysis of the use of each dictionary entry showed that
this is not the case for most characters—common charactever 40% of the entries were never used. Informal reviews of
will typically have two to four highly probable alternatives [6].the current dictionaries have verified this result. Many of the
Our strategy is to define as many of the contexts for whighictionary entries are superfluous. For example, many 4-gram
the reading deviates from some default reading in the highnd 5-gram entries are not required because the same contexts
order dictionaries, and enter to the default reading in tiae covered in the 2-gram and 3-gram dictionaries.
1-gram dictionary. An example of this is shown in Fig. 4. We are in the process of manually reviewing the dictionaries
The character shown in the 1-gram entry is normally read asd consolidating duplicate entries. A topic of further research
“tsubasa” (which means “wing”). However, when it appeargill be to optimize the dictionaries algorithmically based
as a 2-gram, the same character is read as “yoku” (which af® grammar compiler techniques. Even without optimization,
means “wing” but is used in contexts such as “left wing” anliowever, the current dictionaries occupy about 15 Mbytes of
“right wing”).® In this case, about 30 entries are required ipomputer memory—not much given the power of modern
the 2-gram dictionary to identify all common exceptions tdesktop computers. If the dictionaries are not loaded into
the default reading. memory, CPU requirements would be even more modest by
This is, in effect, the normal procedure for adding a ne¥@day’s computing standards.
entry to the dictionary: 1) identify the default behavior and add Search time in the dictionaries is also not a significant
it to the low-order dictionaries and 2) identify the exceptionissue. Currently, the dictionaries are searched using a bisection
and add them to the higher order dictionaries. This procedwgearch algorithm that has a complexity®@flog V). With this
is easily accomplished by consulting a good Japanese kalfjorithm, even if we double the size of the dictionaries, the
dictionary [13], [19]. We have been successful at trainingicremental cost in CPU time is insignificant. Hence, aside
novices to perform such dictionary maintenance—all that isom memory concerns, extremely large dictionaries are not a
required is an above average kanji reading level (we hapeoblem. We are fairly confident that even if we expand the
used secretaries with two years of post-college educatigi9verage of the current system, it is unlikely that the total size
and a good kaniji dictionary. Hence, we believe that we hagé the dictionaries would even double over their present size.
achieved our first requirement: simple dictionary maintenance.
A summary of the size of each-gram dictionary is given
in Table I. The total size of the dictionaries is 145753 entries. ll. L ENGTH-CONSTRAINED DYNAMIC PROGRAMMING

Not unexpectedly, the distribution of entries peaks with the |n this section, we discuss the problem of efficiently parsing
2-gram dictionary, and tails off quickly. The entries in thesghe text for the best combination of dictionary entries. As
dictionaries initially came from several publicly available elecmentioned before, the search algorithm and the dictionary
tronic dictionaries [20], [21], and were subsequently manualfesign are closely coupled. The weights of the dictionary
corrected based on some experimental results (see Section BAlries strongly influence the choice of the best path in
the search algorithm. Because the number of permissible

5This difference is referred to in Japanese as “on-yomi” and “kun-yomi.combinations could potentially be large, and the dictionaries
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are very large (by design), an efficient search algorithm is  original text:
very important. .
Perhaps the simplest approach to a dictionary-based algo- &‘mﬁmi
rithm is to scan the text from left to right and select the largest  “argest n-gram first” parse (incorrect):
n-gram found in the dictionary. This strategy, which we refer

to as the “largest-gram first” approach, is summarized below: ﬁtﬁ %{w g
for1<i< M{ FH1EW DTADD I
forl<j<N{ “largest first” ing 1 incorrect):
if 3 s { argest n-gram first” parse using 1-grams (incorrect):
kg: k1+j_1 — hP; *ﬁfﬁ E E {Elj ‘i
i=14+]
} break; 3730 ) AE b 3
1 parse using exhaustive search (correct):
J ®) S v )
where M is the length of the input stringk; denotes the %5 ffb\V)TA b I3

first character in the input, an¥ denotes the maximum-
gram order. Though at first glance it might appear shortglg- 5- Example of ambiguity in which a simple “largestgram first’

. Id be found first using this strate the weights farsmg strategy fa||§. The kanji text is shown ann_g with its hlragana_
entrle_s \_Nou e A g ay. 9 Ebresentation. The first two characters represent a valid 2-gram. However, if
the dictionary are adjustduch that on the average longetrnis is chosen, then the next characters will not parse correctly. In our current

matches are favored over shorter matches. system they would be incorrectly converted as 1-grams. The correct parse is
= | . he fi h hthe 9 shown as consisting of a 1-gram, a 3-gram, and two 1-grams (identification
or example, starting at the first character, search the -8 Word boundaries is the significant difference between the first and third

dictionary for the first nine characters. If no match is foundeadings).

search the 8-gram dictionary for the first eight characters.

When a match is found for am-gram order ofi, convert the

first ¢ graphemes, and move to tlie+ 1)°* grapheme. Since \ynere wlki—;41:  ki] represents the weight of am-gram

most pyo kanji graphemes have a 1-gram entry, usually at thgtionary entry of lengtly corresponding to characteks. ;1

very least, a reading consisting of all 1-grams will be outpufe 1, in the input text. The best path will be chosen as the path
This strategy is worth mentioning because it is quite effegitn the maximum total score.

tive—it is valid for perhaps 80% of the ambiguity typically The transition score is very important in limiting the search

encountered. However, one quickly learns that this strategyace, and is defined as

is not sufficient for high performance. Often, fixing a choice

early will result in improper translations later in the sentence. o 1 j=k,

Such an example is shown in Fig. 5. In this case, choice of evans((1,7)|(0 = K, 1)) = 0 elsewhere )

an initial 2-gram results in a nonsense parse for the next

three characters. In this case, there is a possibility that twbere d;..,,, indicates the score due to making a transition

succeeding three characters could be treated as a 3-granfr@n one node to the next. Let us denote the maximum

three 1-grams, but in both cases the readings are incorrggam order asV,,... Equation (5) indicates that we need to

Clearly what is needed is a global optimization: translate tlsearch one and only one previous column for each node, in

“most-probably” or “best” sequence in the entire text firsthe range:l < I < Npax.

and then work our way backward and forward to complete Before analyzing the implications of (4) and (5) too deeply,

all unresolvedn-grams. Since it is likely that there will belet us illustrate the solution using a dynamic time-warping

competition among alternatives, it is best to cast this problesoenario. The formulation is similar to that used in other text

as an optimization problem, and solve it using a fairly standaptlocessing problems [23] and speech recognition problems

dynamic programming (DP) approach. [24]. We will assign kanji characters to the horizontal axis and
Since the number of entries in the dictionaries is by ne-gram order to the vertical axis. The dynamic programming-

cessity large, we would like to limit the number of times théased search for the example of Fig. 5 is shown in Fig. 6. We

dictionary is searched. With this in mind, we will pose thigall our approach length-constrained dynamic programming

optimization problem using an approach in which incrementbhécause it is obvious from Fig. 6 that the best path is simply an

scores are accumulated primarily on both the nodes [22] darangement of acceptabbegram orders under the constraint

“Type N” case). Our node score is defined as that the sum of their lengths equal the length of the input text.
At node ¢, 7) the node score is computed by searching
dnode (i, J) = wlki—j41: ki (4) the appropriate dictionary for an-gram composed of kanji

charactersk;_;,; to k;. Since the dictionaries are a one-

6These adjustments are largely heuristic in nature, but were applied usmb'one mapping, t'here (_:an OnlY be one choice pOSSIb|e at
semi-automated techniques. each node. Even if multiple choices were allowed, the most
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l‘ A potential backpointer
6 — * . * * - .
3
5 — L L] * L] L] L]
n 2 2-gram node
g 4 — - . L] * . *
ra 1 1-gram node
mo Best Path best backpointer
° I |
r
d of . Ks Ky Ks
o o -
r B i
17
K Second Choice
3
| | | | 1 ; >
Start Ko K, K, Ks K, Ks Stop i

wOMf] = OB @ i

kanji character (input)

Fig. 6. Example illustrating an efficient dynamic programming-based search for the best kanji reading. The horizontal axis corresponds toahg input k
characters. The vertical axis corresponds tosthgram order. Node scores include the weight of an appropriate entry in the dictionary. Straight lines denote
backpointers that point to the previous column; arcs denote backpointers that skip the previous column(s). Previous paths from a given node can exten
backward as far back as the maximurrgram order. Theoretically, this would be prohibitively expensive in computational cost. In practice, there are very
few competing paths that need to be considered. A diagram showing the first three allowable backpointers for a 1-gram and 2-gram node is shown to the righ

probable (or entry with the largest weight) would be chosen (Input) ESFCTRUERER
at each node in the optimization process—there is no need to
keep alternatives in finding the best path. However, for other (Output) so u da i ri te ng ga wa ha
applications, retaining multiple readings of argram at each Score: 6.02
node might be desirable (for example, all possible readings of T
the text could be output). dict no. 01: (#) (so u)
Of course, the feature of DP is that the number of previous . ) L.
alternatives that need to be explored are kept to a minimum. dict no. 03: [f{¥f) (da i ri te ng)

In our case, the number of previous partial paths that need

to be searched are a function of thegram orderj. Only

column i — j needs to be searched for a previous partial dict no. 01: (id) (ha)

path backpointer, because thegram at the current node will Fig. 7. Example output from the-gram algorithm for the example in Fig. 6.

consume all characters from the end of the previous partide ASCII output is shown along with some debugging information indicating

path from columni — j to the current node. In this sense, th&hich dictionary entries were used.

n-grams are designed to consume input characters backward

in position—they consume characters in the direction towardging|ly, the output from thes-gram algorithm is given in

the beginning of the text. This is depicted by the curved arggy. 7 for the example in Figs. 5 and 6. The ASCII reading

in Fig. 6. is output along with some debugging information. Normally,
Fortunately, the number of competing hypotheses is oftgl punctuation is stripped from the input and not displayed

small, so the search time is actually very close to lineg{ the output. If a symbol such as “JYO” or “EUC” is

with the length of the input text. On an evaluation databaggsplayed in the output, then we know something went wrong.

described in the next section, 19% of the sentences containe®p debugging display is available that shows the partial

at least one ambiguous character sequence. On a charactefhyhs, competing dictionary entries, etc. These are extremely

character basis, about 5% of the characters (columns in ffifyl in debugging the algorithm and determining the required
DP grid) display multiple partial paths. Hence, if one desirggprovements in the dictionary.

truly high performance, a DP matching algorithm must be

employed. On the other hand, if an algorithm needs only about

80% accuracy (the performance achieved by many public IV. EVALUATIONS

domain algorithms), the need for DP matching will not be As we mentioned in the introduction, kanji coverage is
apparent. a crucial issue in evaluating the performance of a system.

dict no. 01: ({#) (ga wa)
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TABLE I
OVERVIEW OF THE ELECTRONIC Book (EB) TexT DATABASE USED TO DEVELOP THE n-GRAM ALOGRITHM. A SUMMARY OF EACH TEXT SOURCEIS GIVEN, ALONG
WITH THE NUMBER OF SENTENCES IN THE DATABASE. THE LAST TwO COLUMNS CONTAIN THE NUMBER OF SENTENCES THAT THE 72-GRAM ALGORITHM CURRENTLY
CANNOT CORRECTLY PARSE DUE TO AN UNKNOWN JoYO OR EUC CHARACTER COMBINATION. THIS DATA CAN BE USED TO ESTIMATE THE DIFFICULTY OF THE
KANJI CONTAINED IN THE TEXT MATERIAL. MANY OF THESE ERRORSARE ATTRIBUTABLE TO PROPERNOUNS THAT SIMPLY REQUIRE A SINGLE DICTIONARY ENTRY TO
Fix. THE FIRST FIVE SOURCESHAVE BEEN USED EXTENSIVELY TO TRAIN THE 2-GRAM ALGORITHM. HENCE, THE ERROR RATES ARE LOWEST ON THESESOURCES

Number
of o

Sentence Joyo EUC

Source Summary s Errors Errors
Language of America Conversational English 14,214 1 (0%) 0 (0%)
Asahi Tensei Jingo Newspaper Articles 78,730 17 (0%) 0 (0%)
Conversational Dictionary Useful Phrases 3,476 0 (0%) 0 (0%)
Eiwa Dictionary 29,954 6 (0%) 10 (0%)
Gendai Dictionary 25,312 8 (0%) 298 (0%)
Sample 8 Misc. Text Sources 64,708 5 (0%) 1,092 (2%)
13 Easle Mystery Game 695 0 (0%) 0 (0%)
Daijirin Dictionary 100,473 1,607 (2%) 2,370 (0%)
Kojien Dictionary 166,780 6,695 (4%) 13,239 (8%)
Britannica Shokomoku Encyclopedia Britannica 382,643 27,684 (7%) 34,751 (9%)
Hyakuning Isshu Old Poetry and Songs 1,555 195 (13%) 289 (19%)
FJ News Internet Network News 38,735 991 (3%) 1,099 (3%)
Total 907,275 37,209 (4%) 53,148 (6%)

As part of an ongoing project to collect a large database

TABLE 1l

of Spoken Japanese we have generated a Iarge Senteﬁg@wARv OF THE RESULTS OF EVALUATIONS ON A 1000 &NTENCE TRAINING

database from a diverse set of text material.
[5], known as the Electronic Book (EB) database, includes

This datab DATABASE THAT IS A SUBSET OF THEEB TexT DATABASE. THE n-GRAM
IS data a%%GORITHM, IN CLOSED-SET TESTING, IS SHOWN TO PROVIDE SIGNIFICANTLY
BETTER PERFORMANCE THANITS PuBLIC DOMAIN COUNTERPARTS

sentences extracted from almost 1 Gbyte of data and includes

19 different text sources. Among them are several standard Electronic Book (Training) Database
Japanese dictionarieEncyclopedia Britannican Japanese, a Kani
. . 1
leading newspaper, and some Japanese literature. A summary Combined Sentence Sentence cnméter
i H H Sentence Substitution Rejection Substitution
of the text qatabase IS glven n Tab,le II. : : Algorithm Error Rate Error Rate Error Rate Error Rate
The algorithm was trained extensively on the first five text
; bl he | | ¢ Tabl how-—UNAN 1% 30.2% 13.9% 12.9%
sources in Table Il. The last two columns o Tal e I_I Show—mn 605% P AA T35 3557,
the number of sentences that, with the current dictionari€SKAKASI 23.3% 23.0% 0.3% 456%
still contain unidentifiable character sequences. Due to limiteg¥Sram 20% 2.0% 0.0% 0.3%
resources and time, we were not able to manually correct errors
for all text sources. The first five sources were thought to be
TABLE IV

most useful for general text processing. The remaining sourcgs

require mainly proper noun additions to the dictionaries.
We conducted two formal evaluations of thegram algo-

rithm. First, we developed a set of 1000 sentences by rando

MMARY OF THE RESULTS OF EVALUATIONS ON THE FJ NEws 1000 $NTENCE

DATABASE. THE n-GRAM ALGORITHM IS AGAIN SUPERIOR IN A CLOSED SET

TeST. THE REMAINING ERRORSPRODUCED BY THE 12-GRAM SYSTEM ON THIS
TABASE CANNOT BE CORRECTED BY AUGMENTING THE DICTIONARIES. THE
News DATABASE CONTAINS A MORE RESTRICTED RANGE OF KANJI THAN THE

sampling all text database sources shown in Table Il eXcept Ep parasase, so THE RESULTSARE OVERALL SOMEWHAT BETTER

the FJ Newsdatabase. Second, we developed a sentence setef

1000 sentences by randomly sampling EkeNewsdatabase. FJ News Database
Both of these sets were extensively reviewed such that they
. : . ; : Kanji
contain sentences wh|ch had unambiguous re_adlngs and_ did Combined | Sentence Sentence Character
not contain any pathological problems for machine conversion Sentence | Substitution | Rejection | Substitution
LT . flgorlthm Error Rate Error Rate Error Rate Error Rate
(more on this in the next section). We evaluated several
. : : o JUMAN 39.2% 30.3% 8.9% 9.0%
puphc domain algorithms on these d_atabases and compared— S ST =7 5%
their performance to the-gram algorithm. A summary of —<xarasi A% T1.0% 0.1% 18%
the results for each database is given in Tables Ill and [V, N-Gram 3.6% 3.6% 0.0% 0.5%

respectively.
Three public domain algorithms were chosen for inclusion

in this test based on their availability, widespread use withifapanese language text processing and dictionary access. This
the community, and adoption as somewhat of& facto package is widely used within the Japanese research commu-
standard for certain key applications. The first of these isnity, mainly because it supports on-line interaction with some
system denoted as JUMAN [13]. Kanji-to-hiragana conversigtandard CD-ROM dictionaries included in the text database
is a small part of this extensive package that supports geneshlTable II.
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Database: Electronic Book FJ News are the result of extensive training of the algorithm on the
EB database. In this sense, it is a closed-set test and we
Char. # Errors Char. # Errors . .
would expect superior performance under such conditions. In
JUMAN: A 40 A 46 fact, we expect that the performance of each of the public
By 13 £} 29 domain algorithms could be significantly improved if more
t 9 T 19 attention was given to their dictionaries. In Tables Ill and
IV, we also see that KAKASI is significantly better than
Wnn: 13 R 2 the other two algorithms. The performance levels of JUMAN
E 9 Z 20 and Wnn make these algorithms virtually useless for general
yj | 8 5 19 research use.
Finally, the n-gram algorithm makes on the average one
KAKASE 7 R character error per sentence in error. In each of these cases,
A 7 ]} 10 there is an obvious second choice. However, none of the
errors can be fixed wi e current pattern matching ap-
E 6 % 5 be fixed with th t patt tching ap
roach—higher level contextual information is required. Fur-
p h—higher level textual inf t quired. F
N-Gram: {,\ g bl 12 ther, we doubt that the current level of computation linguistics
"f‘% 5 g 3 technology would be capable of accurately quantifying such

context. Hence, we believe we are reaching something of a
Fig. 8. Top three most commonly misread characters are shown for eacH@ver bound on the error rate.

the algorithms evaluated. Many of these characters have a strong alternat@fter completing evaluations on the EB training data, we
choice that can be disambiguated using a better model of the context. The '

characters misread by tlwegram algorithm are notoriously context dependen@xeCUted a true open-set ex_periment forthgram algorithm
on theFJ Newsdatabase. This data had never been previously

used for training by the-gram algorithm. The performance of
the n-gram algorithm was somewhat disappointing—initially
% sentence errors. Over 75% of the errors involved mis-
) . ) - .é%dings of about five common characters. After examining
under Unix. It is used to handle input and display of kan{he errors on theeJ Newsdatabase, and making appropriate

text for the Japanese language extensions to th(_a X11 Wmd(%‘frections to the dictionaries to reflect the errors we observed
System [10] and for the Japanese language version of emac fr?d hence no longer making this an open-set test), we
popular WYSIWYG text editor). Several popular commerci chieved the results shown in Table IV

wordprocessing packages also use the Wnn software. The FJ Newsdatabase is somewhat special—it consists

The third algorithm chosen was KAKASI [15]. We discov-¢ sentences extracted from the several Usenet newsgroups

ered this algorithm after working extensively with the firsf, \yhich people discuss various social activities. The data
two algorithms previously described (and after noting thejfas an uncharacteristically high content of characters relating
deficiencies). KAKASI is more focused on the problems qf, pegple. This type of data was not well represented in
text conversion. Though all three of these algorithms use SOg\& training database and contains some characters that are
level of dictionary lookup, KAKASI's dictionaries are clearlyyragitionally difficult to read. Hence, a handful of new entries
the most extensive. In fact, they appear to be a derivative of figre required to improve performance.
Kojien dictionary [21]. KAKASI is also the computationally g place the results presented here in perspective, recall that
most efficient of these algorithms, and appears to be the m@gt evaluation databases contain sentences that were specially
extensible since its dictionary format is fairly well documentegg|ected to use characters within tiogg kanji character set.
and simple. One of the major drawbacks, however, is that iffe performance in Tables Ill and IV should be regarded as a
pattern matching approach appears to be simplistic and unaglger bound on performance more than an average. Clearly,
to exploit sophisticated dictionaries. as shown in Table II, processing large databases poses many
In this evaluation, the output from each algorithm was hanghallenges in handling noyo characters—these problems
scored by an expert, and the resulting errors were tabulaig@fimately dominate performance.
in two classes: 1) a rejected sentence—the system did nofinally, we investigated CPU time as a function of the
output a valid translation and 2) a substitution error—thength of the text. The results are shown in Fig. 9. As
system incorrectly converted one or more kanji charactefssted previously, because the dynamic programming grid
The composite performance of the system is the sum of thefithensions are a function af-gram order and input length,
two types of errors. In addition, we also kept track of the totaind because the number of competing hypotheses are small,
number of kanji character errors generated for each evaluatitiie CPU time required by the algorithm is linearly proportional
The most commonly misread characters are shown in Fig.t8.the input length. The CPU time shown in Fig. 9 is computed
Because the process of hand-scoring is time consuming, wre a Sun Sparc station 10/30 with 128 Mbytes of memory
were limited to an evaluation database size of approximatdty a program written entirely in C++. On the average, the
1000 sentences. processing time is about 1 ms per character. Because the
It is not surprising that the results for thegram algo- current software loads the dictionaries in memory prior to
rithm are so promising. The results presented in Table Bprocessing, approximately 20 s of CPU time is required for

The second public domain algorithm evaluated was W
[9]. Wnn is part of many Japanese wordprocessors availal
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CPU Time (secs) On An SS 10/30 derived reading, referred to as “onyomi,” or the Japanese-

0.10 X ' derived reading, referred to as “kunyomi” [6]. Usually, when
the character occurs as part of a group of kanji characters, the
008t | onyomi reading is used. When the character is read by itself
(a 1-gram) the kunyomi reading is used. For many characters,
0.06 | it is difficult to predict which reading will be chosen.
The character underlined in Fig. 10(a) presents such a
0.04l | case. It alternates between the onyomi reading “jing” and
the kunyomi reading “hito.” In the first sentence, the correct
0.02} ] reading is the kunyomi reading “hito” (the translation of the
sentence is, “Do work that is useful for people.”). In the
0.00 second sentence, the correct reading is the onyomi reading
0 40 80 120

“jing” (a slightly different usage; the translation of the sentence
is “There are no Japanese victims involved”). It is often
Fig. 9. Demonstration of the complexity of thegram algorithm. CPU time difficult to resolve such cases without additional contextual
on a Sun Sparc station SS 10/30 is shown as a function of the length of i{hdormation.

order and the nput lngth, CPU tim is neary proportional o the length of The second case, shown in Fig. 10(b), is an example of a
the input. common problem in Japanese—counters. The first example
is “ju ichi nin” (in English, “eleven people”). The second
case is “hitori” (in English, “one person”). Depending on the
type of object being referred to, a number followed by an

object will be pronounced with a special ending. For example,

Input Length (Characters)

(a) Choosing “onyomi” vs. “kunyomi” is difficult;

ADBILDEFET S, “ichi” is the word for “one,” but when counting long slender
7 R objects such as pencils, we use “ippon no empitsu” for “one
ﬁ}& HINILA. pencil.” This type of problem is best handled by rules. Pattern
(b) counters need to be rule-driven; matching algorithms suffer from a combinatorial explosion
| problem—every number for every type of object would need
A to be handled.

Finally, there are cases where higher level contexts are
—A required. In Fig. 10(c), we present a reading of two characters
as “monaka” and “saiah” In the first sentence, the correct

(c) extremely high-level context is often required. S ot )
reading is “monaka” which is a bean-filled wafer (the sentence

ﬂ&iﬁ“f’ﬁﬂ% 79, means “I like monakas”). In the second sentence, the correct
— reading is “saic” which means “in the midst of’ (the
BB T, sentence means “lI am in the midst of working”). There is no
straightforward way of distinguishing the two readings without
. ks some knowledge of the meaning of the sentence or syntactic
w7y \@75‘\11)0: TR, structure.

The second pair of sentences in Fig. 10(c) contains a similar
context-dependent case. The basic meaning of that kanji is
different in the two sentences: one means a wind, and it's
pronounced “kaze” (“a cold wind is blowing.”); the other
means “style” and is pronounced “hu u” (“please don’t say
it in such a way”). Again, choosing the correct reading in this
ecase is quite difficult.

ZABRUIZEDZLNWTT IV,

Fig. 10. Three classes of problems for thgram algorithm that are beyond
the reach of the current algorithm (details are provided above).

initialization. For small amounts of input text, this is th
dominant factor in the total CPU time.

VI. SUMMARY

V. PROBLEMS We have presented a high-performance kanji-to-hiragana

Unfortunately, as shown in the previous section, there arenversion algorithm. Its performance was shown to be su-
limitations to the current algorithm. Aside from the problenperior to three public domain algorithms on two extensive
of unknown kanji characters, there are three common typesesfaluations. The algorithm currently handles a wide rage of
errors that occur. These are shown in Fig. 10. Generally speakimmon kaniji characters, and can be easily extended to more
ing, they suffer from the same fundamental problem—moudifficult text by augmentation of its dictionaries.
sophisticated contextual information is required. We are still concerned about coverage in open-set testing.

The first class of problems involves a misreading of th&s we gain more experience with wider varieties of text, we
character for person, which is pronounced “hito.” The genenaill refine the dictionaries and minimize the number of entries
problem in this case is determining whether to use the Chinesegquired. We are confident that most problems concerning



PICONE et al: KANJI-TO-HIRAGANA CONVERSION

kanji-to-hiragana conversion can be dealt with, as we haus)
demonstrated in this paper. The only real limitation at this

point is the labor cost in augmenting the dictionaries. Reducing,
the skill level required to augment the dictionaries goes a
long way toward minimizing labor costs while guaranteeinHS]
consistency.

Ironically, most of the algorithms we have reviewed seem to
suffer from this same problem—inadequate dictionaries. THE!
reality is that kanji processing takes a lot of hard work. Mosto)
of the tools we have seen, especially the public domain ones
in this paper, are very good, but do not have the investme[%
in time required to develop their dictionaries and rules. In
kanji processing, there is no real way around this—at some
point you must deal with a large exception dictionary. We feét?l
that our dictionaries are adequate for general tasks, but nges
improvement mainly in exception cases such as proper nouns.

Finally, it is clear there is room for combining some level
of rule-based processing. One important area of research vl
be to add a phrase analysis [25] and evaluate its usefulness.
We believe that the basic algorithm presented here is valj 5]
but can be improved somewhat through the addition of simple
phrase level information. The challenge will be to produce a
highly accurate segmentation algorithm.
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