
IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 7, NO. 6, NOVEMBER 1999 685

Kanji-to-Hiragana Conversion Based on
a Length-Constrained -Gram Analysis

Joseph Picone,Senior Member, IEEE,Tom Staples, Kazuhiro Kondo,Member, IEEE, and Nozomi Arai

Abstract—A common problem in speech processing is the
conversion of the written form of a language to a set of phonetic
symbols representing the pronunciation. In this paper, we focus
on an aspect of this problem specific to the Japanese language.
Written Japanese consists of a mixture of three types of symbols:
kanji, hiragana, and katakana. We describe an algorithm for
converting conventional Japanese orthography to a hiragana-like
symbol set that closely approximates the most common pronun-
ciation of the text. The algorithm is based on two hypotheses:
1) the correct reading of a kanji character can be determined
by examining a small number of adjacent characters and 2)
the number of such combinations required in a dictionary is
manageable.

The algorithm described here converts the input text by select-
ing the most probable sequence of orthographic units (nnn-grams)
that can be concatenated to form the input text. In closed-
set testing, thennn-gram algorithm was shown to provide better
performance than several public domain algorithms, achieving
a sentence error rate of 3% on a wide range of text material.
Though the focus of this paper is written Japanese, the pattern
matching algorithm described here has applications to similar
problems in other languages.

Index Terms—Natural language interfaces, speech recognition,
speech synthesis.

I. INTRODUCTION

A COMMON problem in speech processing is the con-
version of a written language to a set of phonetic

symbols. Such algorithms are often called letter-to-sound rules
in English, and are commonly a core component of a text-to-
speech synthesis system [1]. More recently, as interest in large
vocabulary speech recognition has grown, and speech data-
base projects have become more ambitious, such algorithms

Manuscript received November 15, 1993; revised March 23, 1998. This
work was performed while the authors were with Texas Instruments, Tsukuba,
Japan. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Daniel Kahn.

J. Picone was with the Tsukuba Research and Development Center, Texas
Instruments, Tsukuba, Japan. He is now with the Institute for Signal and
Information Processing, Mississippi State University, Mississippi State, MS
39762 USA (e-mail: picone@isip.msstate.edu).

T. Staples was with the Tsukuba Research and Development Center, Texas
Instruments, Tsukuba, Japan. He is now with Nuance Communications, Menlo
Park, CA 94025 USA.

K. Kondo was with the Tsukuba Research and Development Center, Texas
Instruments, Tsukuba, Japan. He is now with Yamagata University, Yonezawa,
Yamagata 992, Japan.

N. Arai was with the Tsukuba Research and Development Center, Texas
Instruments, Tsukuba, Japan. She is now with Hilti Japan Ltd., Yokohama,
Kanagawa 220-0004, Japan.

Publisher Item Identifier S 1063-6676(99)07983-3.

Fig. 1. Example demonstrating the process of converting conventional or-
thography to hiragana. A romaji transcription (transliteration of Japanese
words into Roman letters) and an English translation are also shown.

have found applications in the development of phonetically
balanced sentence sets [2], [3] and in the evaluation of speech
recognizers [4]. The algorithm described in this paper, in
fact, was used to develop a database of 10 000 phonetically
balanced sentences for a Japanese speech database project [5].

A. Overview of Japanese Orthography

The Japanese writing system is logographic: each character
in the writing system, referred to as a grapheme, can denote
all or part of a word. The conventional writing system [6],
[7] consists of a mixture of three types of symbols:1 kanji,
hiragana, and katakana. Kanji symbols, adapted from the
Chinese writing system, are used to represent many con-
ceptual words and indigenous names. Hiragana symbols are
used to write inflectional endings of the conceptual words
written in kanji, and are used to write many types of native
words not written in kanji. Katakana symbols are used to
represent words of foreign origin. Hiragana and katakana are
syllabaries [6].

A typical example of Japanese orthography is shown in
Fig. 1. Words, such as “watashi” or “tokyo,” can be composed
of several kanji graphemes. Verbs, such as “ikimashita” (“to

1Roman letters (e.g., company names such as “NHK”) and Arabic numerals
(e.g., digit string such as 3300¥) are also used in conventional orthography.
However, these character types present a problem of secondary importance,
and one whose solution is not necessarily unique to written Japanese.

1063–6676/99$10.00 1999 IEEE

686 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 7, NO. 6, NOVEMBER 1999

go”), shown in Fig. 1, contain a mixture of kanji characters
indicating the base form (“iku”) or verb stem and hiragana
characters representing the verb conjugation (past tense). Place
names of foreign cities (and other foreign words), such as “nyu
yoku” (“New York”) are written in katakana.

In Japanese orthography, the words within a sentence are
not normally delimited with a space or some other marker to
indicate a word or phrase boundary. Only sentence boundaries
are delimited. Conceptually, we must segment the text prior
to converting each group of graphemes to their meaning or
pronunciation. In Fig. 1, the correct segmentation of the text
is also given. Automatic segmentation is one challenge in
machine processing of Japanese text.

In most formal writing (e.g., newspapers, magazines, busi-
ness letters, and electronic media) it is recommended that use
of kanji characters be restricted to a national standard set
referred to as joyo kanji (“everyday kanji”). This set contains
1945 characters [6] and can be regarded as the core kanji
set that an average reader is expected to read easily. To put
the magnitude of the problem somewhat in perspective, the
average college undergraduate can read about 3000 characters,
and a good dictionary contains about 12 000 characters [8]. In
this paper, we will be most concerned with the accuracy of
algorithms on text composed only of characters within the
joyo set. Characters outside of this set most often must be
handled as special cases.

On the other hand, two more extensive character sets have
been introduced as an electronic representation for modern
day computing environments. These representations serve a
function similar to the ASCII character set—they provide a
means to store text in a machine independent format. They
are both supersets of the joyo list and define conventions for
representing kanji characters outside of the Joyo kanji list.

The first of these two sets is known as the 8-b Japan Industry
Standard (Shift-JIS) [9] character set. Shift-JIS is found on a
wide variety of computing platforms and electronic media. For
example, shift-JIS is supported within the Japanese language
extensions to the popular X11 Window System [10] (available
on most UNIX workstations). The second set tends to be
used mainly in the Japanese Language Environment for Sun
workstations (and associated third party tools), and is known
as the Extended Unix Code (EUC) [11] character set. Its main
feature is that it is a multibyte character set (one, two, and
three byte sequences are currently supported), and supports
both conventional ASCII text and Japanese orthography within
the same character set.

Both of these character sets contain about 7000 characters.
It is easy to encounter text sources, such as electronic books
and encyclopedias, that make extensive use of the non-joyo
characters in these character sets. In electronic information
processing today, there is significant pressure to restrict usage
of kanji to characters within these sets. Hence, these character
sets play an important role in the development of the text
processing algorithm described in this paper.

B. A Simple Pattern Matching Approach

One of the reasons hiragana is an extremely useful rep-
resentation of the written language is that its character set is

limited to about 125 characters. Hiragana does not map directly
to pronunciation—some amount of additional processing is
required. However, hiragana is a representation that is quite
close to the actual pronunciation, and therefore is very useful
for measuring the complexity of the underlying sounds in a
given segment of text.

One distinguishing aspect of Japanese is that all written text
can be converted to hiragana with no loss in information about
the pronunciation, though it is possible that there might be
some loss in understanding. An example of such a conversion
is shown in Fig. 1. Another rather distinguishing aspect of
Japanese orthography [6], [12] is that the correct translation
of a kanji character depends on the context in which it
appears. Each kanji character normally has several common
readings and must be disambiguated by examining the context
in which the character occurs. In other logographic systems,
such as Chinese, more kanji-like characters are used, but the
translations of each character are less context sensitive, and
a context-independent dictionary lookup procedure appears to
suffice.

In this paper, we describe an algorithm for converting
conventional Japanese orthography to a hiragana-like symbol
set that closely approximates the most common pronunciation
of the text. The algorithm is based on two hypotheses: 1)
the correct reading of a kanji character can be determined
by examining a small number of adjacent characters and 2)
the number of such combinations required in a dictionary is
manageable.

This algorithm selects an optimal translation of the text by
constructing the most probable sequence of graphemes that
can be concatenated to form the input text. Comprehensive
dictionaries have been developed that contain kanji-grams
(mixtures of kanji and hiragana are also used) and their
hiragana-like translations (implemented using ASCII codes).
The accuracy of the algorithm is extremely dependent on the
quality of these -gram dictionaries (discussed in Section II).

Our general philosophy in this work is to favor algorithmic
simplicity over CPU or memory efficiency. This is based on
our observation that computer memory and CPU speed are
increasing at a rapid pace. Online dictionaries once thought
to be too large to be practical can now be routinely stored
in physical memory during processing. Our approach is in-
herently dictionary-based and memory intensive, rather than
rule-based. A major design goal was to develop a system
that can be easily improved by a novice. Modifications of
rule-based systems often require extensive forethought and
expertise in natural language processing, and historically have
been difficult to maintain.

Several such systems already exist in the public domain.
In Section IV, we compare performance to three public do-
main algorithms: Japanese University Morphemic Analysis
(JUMAN) [13], Wnn [14], and KAKASI [15]. Each of these
algorithms contains a mixture of rules and exception dictio-
naries (not well documented in the accompanying literature).
Each system is fairly limited in the amount of Japanese text
that can be accurately processed. In each case, extension of the

PICONE et al.: KANJI-TO-HIRAGANA CONVERSION 687

Fig. 2. List of output symbols used in kanji-to-hiragana conversion is displayed. Each row containing a set of ASCII symbols is followed by a row
containing the definition of the symbol in katakana (use of katakana in such a table is more standard). A dictionary entry contains three fields: a kanji
n-gram sequence, a sequence of these ASCII symbols representing its reading, and a weight.

system is nontrivial.2 Hence, we perceived a need to develop
a new and simpler system based on statistical methods that
would handle a diverse range of Japanese text.

In the next section, we give an overview of the dictionary
design and summarize the current state of the dictionaries.
Next, we discuss the basic parsing algorithm used to locate the
best combination of patterns in the dictionary. Of course, the
dictionary design and parsing algorithm are highly interrelated.
In the last part of this paper, we present the results of some
comparative evaluations on two text databases, and discuss
some of the limitations of the system.

II. -GRAM DICTIONARY OVERVIEW

We have decomposed the conversion problem into two
steps: dictionary design and sentence parsing. In this section,
we discuss the problem of dictionary design. Two major
constraints on the dictionary design were that a dictionary
must be simple to construct and a dictionary must be extremely
easy to augment. Conceptually, the system can be viewed as

2KAKASI, the latter system, appears to be the easiest to extend, though it
is not completely clear from the documentation what interactions are between
the dictionary entries and the parser.

using one large dictionary. In practice, we find it much easier
to maintain a separate dictionary for each-gram order (kanji
character sequence length). The system described in this paper
currently uses nine dictionaries containing-grams of length
one to nine.

An entry in the dictionary contains three essential fields:
the kanji sequence, its associated hiragana-like translation, and
a weight or probability of occurrence. We will refer to the
hiragana-like translation as its reading in order to maintain
consistency with the literature.3 Currently, we use ASCII
representations for these symbols. Our present symbol set was
derived from an ASCII hiragana symbol table suggested by the
Japan Electronic Industry Development Association (JEIDA)
[16]. The entire symbol set is shown in Fig. 2.

We have faithfully followed the JEIDA standard except for
one significant modification. We have extended the represen-
tation to explicitly model long vowels—syllables ending in

3Clearly, in many cases (such as those described in the next paragraph)
the dictionary entries reflect pronunciation. However, the term “reading” is
adopted because it is more commonly found in textbooks and dictionaries
dealing with the writing system, and conversion from kanji to pronunciation
involves, at least conceptually, first determining the correct reading of the
character.

688 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 7, NO. 6, NOVEMBER 1999

long vowels are marked with a “@” symbol. For example,
“okii” (the Japanese adjective for “big”) is translated to “o@
ki@.” The major motivation for this change was based on
some pronunciation considerations.

Vowel duration is important in spoken Japanese. There are at
least three types of vowel durations. There are short vowels,
such as “o” in “hon.” These are mapped to the appropriate
symbols shown in Fig. 2. Long vowels, such as “o” in “ okii”
are output as the vowel followed by an “@” (e.g., “o@”).
Sometimes two successive vowels in a word internal position
will be pronounced as a single long vowel. In this case, the
“@” symbol is also used. Hence, the “ii” in “okii” is output
as “i@” since it is normally pronounced as “i.”

Finally, there are situations where two consecutive vowels
will be pronounced4 as two separate vowels. In this case, two
vowels will be output (i.e., two short vowels such as “i i” or a
long vowel/short vowel combination such as “o@ o”). Multi-
ple consecutive vowels tend to occur across word boundaries
or in long vowel/short vowel contexts within words. We have
used an explicit representation of the various vowel contexts
anticipating that differentiation of these contexts might be
useful in subsequent speech recognition research.

The general pattern used to describe each entry in the
dictionary is

(1)

where the -gram order, , is defined as

(2)

represents a kanji character, and represent the number
of characters preceding and following the context of interest,
and represents the number of characters within the context.
represents the output sequence of hiragana characters defined
by this -gram entry.

Left and right context are optional. This is indicated in (2)
by the square brackets surrounding and . Of course,
it would be convenient if only context independent entries
were required. For a significant percentage of entries (e.g.,
proper nouns), this is clearly the case. The largest percentage
of entries, however, use right context to define the proper
reading. Right context is most often an adjacent set of kanji
characters, and commonly a mixture of kanji and hiragana for
higher order -grams. Occasionally left context is used, mainly
in defining hiragana to kanji transitions. Such transitions are
often useful for characters that might have a few common
readings that are strongly correlated with their function in
the sentence. Sometimes, this can be isolated by examining
neighboring hiragana characters.

Though (1) appears to make a dictionary entry look com-
plicated, each entry is in fact very simple. Samples from the
dictionaries for -grams of order one, two, and three are shown
in Fig. 3. Each entry consists of an-gram coded using an
EUC representation, an ASCII mapping, and a weight.

Initially, we expected the weight for a dictionary entry to
be probabilistic. We planned to compute these probabilities

4Of course, there are no absolutes in such situations. The system will
output consecutive vowels only if we are confident they will be pronounced
as separate vowels. Our bias is output long vowel symbols when in doubt.

Fig. 3. Excerpts from the 1-gram, 2-gram, and 3-gram dictionaries. A typical
dictionary entry contains the kanjin-gram, the hiragana-like mapping, and a
weight.

by analyzing the statistics of a large text database [5]. We
were anticipating the use of probabilities to resolve ambiguities
and to “learn” the most common interpretation of a character
sequence. More complex statistical models along these lines
have been tried elsewhere [17], [18], but it is unclear as to
the impact that continuous-valued probabilities have played in
the system accuracy (clearly binary valued weights have some
value).

To our surprise, we found that several simple rules for
assigning weights to dictionary entries were sufficient. First,
the nominal weight associated with an-gram is linearly
proportional to its length. In our case, each character has a
nominal weight equal to 1.0. Second, when ambiguities occur,

-grams of higher order are preferred over combinations of-
grams of lower orders. For example, from Fig. 3, the nominal
weight for a 3-gram is slightly higher than any permissible
combination of 1-grams and 2-grams.

Third, -grams containing all kanji entries are preferred over
combinations of hiragana and kanji. Sometimes, a sequence of
a hiragana character followed by two kanji characters can be
interpreted in multiple ways—a 1-gram followed by a 2-gram
or vice-versa. Adjusting the weights of the-grams containing
all kanji characters has proven to be an effective way to make
sure the sequence is segmented properly.

Observe that in Fig. 3, the last four entries in the 1-gram
set are tagged as “JYO” or “EUC,” and the weights of these
entries are less than the nominal weight of a single character
(1.0). This was introduced as a diagnostic measure. Some
characters should never be translated as a 1-gram because
their reading is highly ambiguous. Characters in this category

PICONE et al.: KANJI-TO-HIRAGANA CONVERSION 689

Fig. 4. Example of a kanji character that requires entries in multiple dictio-
naries to completely define the possible contexts in which the character can
occur. In this case, a default reading covering the most common interpretation
is used in the -gram dictionary. The -gram dictionary is used to define the
exceptions.

that fall within the joyo joyo set are tagged with the symbol
“JYO.” Characters that fall outside the set are tagged with the
symbol “EUC.” Because the weights of these entries are set
to be lower than all other 1-gram entries, these entries will
only be used when there are no other choices (the character
essentially falls through the cracks in the system). This is an
important diagnostic tool for determining cases for which the
dictionaries need to be improved.

Finally, and most importantly, we need to discuss the
rationale for adding a dictionary entry. The-gram dictionaries
are explicitly one-to-one mappings: each-gram has only one
entry in a dictionary. Usually, a character that has a dominant
reading is entered into the 1-gram dictionary. Unfortunately,
this is not the case for most characters—common characters
will typically have two to four highly probable alternatives [6].

Our strategy is to define as many of the contexts for which
the reading deviates from some default reading in the higher
order dictionaries, and enter to the default reading in the
1-gram dictionary. An example of this is shown in Fig. 4.
The character shown in the 1-gram entry is normally read as
“tsubasa” (which means “wing”). However, when it appears
as a 2-gram, the same character is read as “yoku” (which also
means “wing” but is used in contexts such as “left wing” and
“right wing”).5 In this case, about 30 entries are required in
the 2-gram dictionary to identify all common exceptions to
the default reading.

This is, in effect, the normal procedure for adding a new
entry to the dictionary: 1) identify the default behavior and add
it to the low-order dictionaries and 2) identify the exceptions
and add them to the higher order dictionaries. This procedure
is easily accomplished by consulting a good Japanese kanji
dictionary [13], [19]. We have been successful at training
novices to perform such dictionary maintenance—all that is
required is an above average kanji reading level (we have
used secretaries with two years of post-college education)
and a good kanji dictionary. Hence, we believe that we have
achieved our first requirement: simple dictionary maintenance.

A summary of the size of each-gram dictionary is given
in Table I. The total size of the dictionaries is 145 753 entries.
Not unexpectedly, the distribution of entries peaks with the
2-gram dictionary, and tails off quickly. The entries in these
dictionaries initially came from several publicly available elec-
tronic dictionaries [20], [21], and were subsequently manually
corrected based on some experimental results (see Section IV).

5This difference is referred to in Japanese as “on-yomi” and “kun-yomi.”

TABLE I
SUMMARY OF THE CURRENT DICTIONARY SIZES. THESE DICTIONARIES HAVE

BEEN DESIGNED TO COVER TEXT RESTRICTED TOJOYO KANJI AND SOME

COMMON EUC CHARACTERS. THE LAST COLUMN SHOWS THE NUMBER OF

ENTRIES ACTUALLY USED WHEN PROCESSING A910 000 SENTENCE DATABASE

One might wonder how many of these entries are actually
needed. This is hard to determine. The tails of the distribution
in a text database tend to be large. Unless one processes vast
amounts of data from numerous diverse sources, one cannot
be sure of the effectiveness of a given entry. We conducted a
simple experiment in which we processed a text database of
900 000 sentences chosen from a wide range of text sources
[5]. An analysis of the use of each dictionary entry showed that
over 40% of the entries were never used. Informal reviews of
the current dictionaries have verified this result. Many of the
dictionary entries are superfluous. For example, many 4-gram
and 5-gram entries are not required because the same contexts
are covered in the 2-gram and 3-gram dictionaries.

We are in the process of manually reviewing the dictionaries
and consolidating duplicate entries. A topic of further research
will be to optimize the dictionaries algorithmically based
on grammar compiler techniques. Even without optimization,
however, the current dictionaries occupy about 15 Mbytes of
computer memory—not much given the power of modern
desktop computers. If the dictionaries are not loaded into
memory, CPU requirements would be even more modest by
today’s computing standards.

Search time in the dictionaries is also not a significant
issue. Currently, the dictionaries are searched using a bisection
search algorithm that has a complexity of . With this
algorithm, even if we double the size of the dictionaries, the
incremental cost in CPU time is insignificant. Hence, aside
from memory concerns, extremely large dictionaries are not a
problem. We are fairly confident that even if we expand the
coverage of the current system, it is unlikely that the total size
of the dictionaries would even double over their present size.

III. L ENGTH-CONSTRAINED DYNAMIC PROGRAMMING

In this section, we discuss the problem of efficiently parsing
the text for the best combination of dictionary entries. As
mentioned before, the search algorithm and the dictionary
design are closely coupled. The weights of the dictionary
entries strongly influence the choice of the best path in
the search algorithm. Because the number of permissible
combinations could potentially be large, and the dictionaries

690 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 7, NO. 6, NOVEMBER 1999

are very large (by design), an efficient search algorithm is
very important.

Perhaps the simplest approach to a dictionary-based algo-
rithm is to scan the text from left to right and select the largest

-gram found in the dictionary. This strategy, which we refer
to as the “largest -gram first” approach, is summarized below:

for
for

if
;

break;

(3)

where is the length of the input string, denotes the
first character in the input, and denotes the maximum-
gram order. Though at first glance it might appear shorter
entries would be found first using this strategy, the weights in
the dictionary are adjusted6 such that on the average longer
matches are favored over shorter matches.

For example, starting at the first character, search the 9-gram
dictionary for the first nine characters. If no match is found,
search the 8-gram dictionary for the first eight characters.
When a match is found for an-gram order of , convert the
first graphemes, and move to the grapheme. Since
most joyo kanji graphemes have a 1-gram entry, usually at the
very least, a reading consisting of all 1-grams will be output.

This strategy is worth mentioning because it is quite effec-
tive—it is valid for perhaps 80% of the ambiguity typically
encountered. However, one quickly learns that this strategy
is not sufficient for high performance. Often, fixing a choice
early will result in improper translations later in the sentence.
Such an example is shown in Fig. 5. In this case, choice of
an initial 2-gram results in a nonsense parse for the next
three characters. In this case, there is a possibility that the
succeeding three characters could be treated as a 3-gram or
three 1-grams, but in both cases the readings are incorrect.
Clearly what is needed is a global optimization: translate the
“most-probably” or “best” sequence in the entire text first,
and then work our way backward and forward to complete
all unresolved -grams. Since it is likely that there will be
competition among alternatives, it is best to cast this problem
as an optimization problem, and solve it using a fairly standard
dynamic programming (DP) approach.

Since the number of entries in the dictionaries is by ne-
cessity large, we would like to limit the number of times the
dictionary is searched. With this in mind, we will pose this
optimization problem using an approach in which incremental
scores are accumulated primarily on both the nodes [22] (a
“Type N” case). Our node score is defined as

(4)

6These adjustments are largely heuristic in nature, but were applied using
semi-automated techniques.

Fig. 5. Example of ambiguity in which a simple “largestn-gram first”
parsing strategy fails. The kanji text is shown along with its hiragana
representation. The first two characters represent a valid 2-gram. However, if
this is chosen, then the next characters will not parse correctly. In our current
system they would be incorrectly converted as 1-grams. The correct parse is
shown as consisting of a 1-gram, a 3-gram, and two 1-grams (identification
of word boundaries is the significant difference between the first and third
readings).

where represents the weight of an-gram
dictionary entry of length corresponding to characters
to in the input text. The best path will be chosen as the path
with the maximum total score.

The transition score is very important in limiting the search
space, and is defined as

,
elsewhere

(5)

where indicates the score due to making a transition
from one node to the next. Let us denote the maximum-
gram order as . Equation (5) indicates that we need to
search one and only one previous column for each node, in
the range: .

Before analyzing the implications of (4) and (5) too deeply,
let us illustrate the solution using a dynamic time-warping
scenario. The formulation is similar to that used in other text
processing problems [23] and speech recognition problems
[24]. We will assign kanji characters to the horizontal axis and

-gram order to the vertical axis. The dynamic programming-
based search for the example of Fig. 5 is shown in Fig. 6. We
call our approach length-constrained dynamic programming
because it is obvious from Fig. 6 that the best path is simply an
arrangement of acceptable-gram orders under the constraint
that the sum of their lengths equal the length of the input text.

At node () the node score is computed by searching
the appropriate dictionary for an-gram composed of kanji
characters to . Since the dictionaries are a one-
to-one mapping, there can only be one choice possible at
each node. Even if multiple choices were allowed, the most

PICONE et al.: KANJI-TO-HIRAGANA CONVERSION 691

Fig. 6. Example illustrating an efficient dynamic programming-based search for the best kanji reading. The horizontal axis corresponds to the input kanji
characters. The vertical axis corresponds to then-gram order. Node scores include the weight of an appropriate entry in the dictionary. Straight lines denote
backpointers that point to the previous column; arcs denote backpointers that skip the previous column(s). Previous paths from a given node can extend
backward as far back as the maximumn-gram order. Theoretically, this would be prohibitively expensive in computational cost. In practice, there are very
few competing paths that need to be considered. A diagram showing the first three allowable backpointers for a 1-gram and 2-gram node is shown to the right.

probable (or entry with the largest weight) would be chosen
at each node in the optimization process—there is no need to
keep alternatives in finding the best path. However, for other
applications, retaining multiple readings of an-gram at each
node might be desirable (for example, all possible readings of
the text could be output).

Of course, the feature of DP is that the number of previous
alternatives that need to be explored are kept to a minimum.
In our case, the number of previous partial paths that need
to be searched are a function of the-gram order . Only
column needs to be searched for a previous partial
path backpointer, because the-gram at the current node will
consume all characters from the end of the previous partial
path from column to the current node. In this sense, the

-grams are designed to consume input characters backward
in position—they consume characters in the direction toward
the beginning of the text. This is depicted by the curved arcs
in Fig. 6.

Fortunately, the number of competing hypotheses is often
small, so the search time is actually very close to linear
with the length of the input text. On an evaluation database
described in the next section, 19% of the sentences contained
at least one ambiguous character sequence. On a character-by-
character basis, about 5% of the characters (columns in the
DP grid) display multiple partial paths. Hence, if one desires
truly high performance, a DP matching algorithm must be
employed. On the other hand, if an algorithm needs only about
80% accuracy (the performance achieved by many public
domain algorithms), the need for DP matching will not be
apparent.

Fig. 7. Example output from then-gram algorithm for the example in Fig. 6.
The ASCII output is shown along with some debugging information indicating
which dictionary entries were used.

Finally, the output from the -gram algorithm is given in
Fig. 7 for the example in Figs. 5 and 6. The ASCII reading
is output along with some debugging information. Normally,
all punctuation is stripped from the input and not displayed
in the output. If a symbol such as “JYO” or “EUC” is
displayed in the output, then we know something went wrong.
A DP debugging display is available that shows the partial
paths, competing dictionary entries, etc. These are extremely
useful in debugging the algorithm and determining the required
improvements in the dictionary.

IV. EVALUATIONS

As we mentioned in the introduction, kanji coverage is
a crucial issue in evaluating the performance of a system.

692 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 7, NO. 6, NOVEMBER 1999

TABLE II
OVERVIEW OF THE ELECTRONIC BOOK (EB) TEXT DATABASE USED TO DEVELOP THEn-GRAM ALOGRITHM. A SUMMARY OF EACH TEXT SOURCEIS GIVEN, ALONG

WITH THE NUMBER OF SENTENCES IN THEDATABASE. THE LAST TWO COLUMNS CONTAIN THE NUMBER OF SENTENCES THAT THEn-GRAM ALGORITHM CURRENTLY

CANNOT CORRECTLY PARSE DUE TO AN UNKNOWN JOYO OR EUC CHARACTER COMBINATION. THIS DATA CAN BE USED TO ESTIMATE THE DIFFICULTY OF THE

KANJI CONTAINED IN THE TEXT MATERIAL. MANY OF THESE ERRORSARE ATTRIBUTABLE TO PROPERNOUNS THAT SIMPLY REQUIRE A SINGLE DICTIONARY ENTRY TO

FIX. THE FIRST FIVE SOURCESHAVE BEEN USED EXTENSIVELY TO TRAIN THE n-GRAM ALGORITHM. HENCE, THE ERROR RATES ARE LOWEST ON THESESOURCES

As part of an ongoing project to collect a large database
of spoken Japanese, we have generated a large sentence
database from a diverse set of text material. This database
[5], known as the Electronic Book (EB) database, includes
sentences extracted from almost 1 Gbyte of data and includes
19 different text sources. Among them are several standard
Japanese dictionaries,Encyclopedia Britannicain Japanese, a
leading newspaper, and some Japanese literature. A summary
of the text database is given in Table II.

The algorithm was trained extensively on the first five text
sources in Table II. The last two columns of Table II show
the number of sentences that, with the current dictionaries,
still contain unidentifiable character sequences. Due to limited
resources and time, we were not able to manually correct errors
for all text sources. The first five sources were thought to be
most useful for general text processing. The remaining sources
require mainly proper noun additions to the dictionaries.

We conducted two formal evaluations of the-gram algo-
rithm. First, we developed a set of 1000 sentences by randomly
sampling all text database sources shown in Table II except
theFJ Newsdatabase. Second, we developed a sentence set of
1000 sentences by randomly sampling theFJ Newsdatabase.
Both of these sets were extensively reviewed such that they
contain sentences which had unambiguous readings and did
not contain any pathological problems for machine conversion
(more on this in the next section). We evaluated several
public domain algorithms on these databases and compared
their performance to the -gram algorithm. A summary of
the results for each database is given in Tables III and IV,
respectively.

Three public domain algorithms were chosen for inclusion
in this test based on their availability, widespread use within
the community, and adoption as somewhat of ade facto
standard for certain key applications. The first of these is a
system denoted as JUMAN [13]. Kanji-to-hiragana conversion
is a small part of this extensive package that supports general

TABLE III
SUMMARY OF THE RESULTS OFEVALUATIONS ON A 1000 SENTENCE TRAINING

DATABASE THAT IS A SUBSET OF THEEB TEXT DATABASE. THE n-GRAM

ALGORITHM, IN CLOSED-SET TESTING, IS SHOWN TO PROVIDE SIGNIFICANTLY

BETTER PERFORMANCE THANITS PUBLIC DOMAIN COUNTERPARTS

TABLE IV
SUMMARY OF THE RESULTS OFEVALUATIONS ON THE FJ NEWS 1000 SENTENCE

DATABASE. THE n-GRAM ALGORITHM IS AGAIN SUPERIOR IN A CLOSED SET

TEST. THE REMAINING ERRORSPRODUCED BY THEn-GRAM SYSTEM ON THIS

DATABASE CANNOT BE CORRECTED BY AUGMENTING THE DICTIONARIES. THE

FJ NEWSDATABASE CONTAINS A MORE RESTRICTEDRANGE OF KANJI THAN THE

EB DATABASE, SO THE RESULTSARE OVERALL SOMEWHAT BETTER

Japanese language text processing and dictionary access. This
package is widely used within the Japanese research commu-
nity, mainly because it supports on-line interaction with some
standard CD-ROM dictionaries included in the text database
of Table II.

PICONE et al.: KANJI-TO-HIRAGANA CONVERSION 693

Fig. 8. Top three most commonly misread characters are shown for each of
the algorithms evaluated. Many of these characters have a strong alternate
choice that can be disambiguated using a better model of the context. The
characters misread by then-gram algorithm are notoriously context dependent.

The second public domain algorithm evaluated was Wnn
[9]. Wnn is part of many Japanese wordprocessors available
under Unix. It is used to handle input and display of kanji
text for the Japanese language extensions to the X11 Window
System [10] and for the Japanese language version of emacs (a
popular WYSIWYG text editor). Several popular commercial
wordprocessing packages also use the Wnn software.

The third algorithm chosen was KAKASI [15]. We discov-
ered this algorithm after working extensively with the first
two algorithms previously described (and after noting their
deficiencies). KAKASI is more focused on the problems of
text conversion. Though all three of these algorithms use some
level of dictionary lookup, KAKASI’s dictionaries are clearly
the most extensive. In fact, they appear to be a derivative of the
Kojien dictionary [21]. KAKASI is also the computationally
most efficient of these algorithms, and appears to be the most
extensible since its dictionary format is fairly well documented
and simple. One of the major drawbacks, however, is that its
pattern matching approach appears to be simplistic and unable
to exploit sophisticated dictionaries.

In this evaluation, the output from each algorithm was hand-
scored by an expert, and the resulting errors were tabulated
in two classes: 1) a rejected sentence—the system did not
output a valid translation and 2) a substitution error—the
system incorrectly converted one or more kanji characters.
The composite performance of the system is the sum of these
two types of errors. In addition, we also kept track of the total
number of kanji character errors generated for each evaluation.
The most commonly misread characters are shown in Fig. 8.
Because the process of hand-scoring is time consuming, we
were limited to an evaluation database size of approximately
1000 sentences.

It is not surprising that the results for the-gram algo-
rithm are so promising. The results presented in Table III

are the result of extensive training of the algorithm on the
EB database. In this sense, it is a closed-set test and we
would expect superior performance under such conditions. In
fact, we expect that the performance of each of the public
domain algorithms could be significantly improved if more
attention was given to their dictionaries. In Tables III and
IV, we also see that KAKASI is significantly better than
the other two algorithms. The performance levels of JUMAN
and Wnn make these algorithms virtually useless for general
research use.

Finally, the -gram algorithm makes on the average one
character error per sentence in error. In each of these cases,
there is an obvious second choice. However, none of the
errors can be fixed with the current pattern matching ap-
proach—higher level contextual information is required. Fur-
ther, we doubt that the current level of computation linguistics
technology would be capable of accurately quantifying such
context. Hence, we believe we are reaching something of a
lower bound on the error rate.

After completing evaluations on the EB training data, we
executed a true open-set experiment for the-gram algorithm
on theFJ Newsdatabase. This data had never been previously
used for training by the-gram algorithm. The performance of
the -gram algorithm was somewhat disappointing—initially
19% sentence errors. Over 75% of the errors involved mis-
readings of about five common characters. After examining
the errors on theFJ Newsdatabase, and making appropriate
corrections to the dictionaries to reflect the errors we observed
(and hence no longer making this an open-set test), we
achieved the results shown in Table IV.

The FJ News database is somewhat special—it consists
of sentences extracted from the several Usenet newsgroups
in which people discuss various social activities. The data
has an uncharacteristically high content of characters relating
to people. This type of data was not well represented in
our training database and contains some characters that are
traditionally difficult to read. Hence, a handful of new entries
were required to improve performance.

To place the results presented here in perspective, recall that
the evaluation databases contain sentences that were specially
selected to use characters within the joyo kanji character set.
The performance in Tables III and IV should be regarded as a
lower bound on performance more than an average. Clearly,
as shown in Table II, processing large databases poses many
challenges in handling non-joyo characters—these problems
ultimately dominate performance.

Finally, we investigated CPU time as a function of the
length of the text. The results are shown in Fig. 9. As
noted previously, because the dynamic programming grid
dimensions are a function of-gram order and input length,
and because the number of competing hypotheses are small,
the CPU time required by the algorithm is linearly proportional
to the input length. The CPU time shown in Fig. 9 is computed
on a Sun Sparc station 10/30 with 128 Mbytes of memory
for a program written entirely in C++. On the average, the
processing time is about 1 ms per character. Because the
current software loads the dictionaries in memory prior to
processing, approximately 20 s of CPU time is required for

694 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 7, NO. 6, NOVEMBER 1999

Fig. 9. Demonstration of the complexity of then-gram algorithm. CPU time
on a Sun Sparc station SS 10/30 is shown as a function of the length of the
input. Because the DP grid dimensions are a function of the maximumn-gram
order and the input length, CPU time is linearly proportional to the length of
the input.

Fig. 10. Three classes of problems for then-gram algorithm that are beyond
the reach of the current algorithm (details are provided above).

initialization. For small amounts of input text, this is the
dominant factor in the total CPU time.

V. PROBLEMS

Unfortunately, as shown in the previous section, there are
limitations to the current algorithm. Aside from the problem
of unknown kanji characters, there are three common types of
errors that occur. These are shown in Fig. 10. Generally speak-
ing, they suffer from the same fundamental problem—more
sophisticated contextual information is required.

The first class of problems involves a misreading of the
character for person, which is pronounced “hito.” The general
problem in this case is determining whether to use the Chinese-

derived reading, referred to as “onyomi,” or the Japanese-
derived reading, referred to as “kunyomi” [6]. Usually, when
the character occurs as part of a group of kanji characters, the
onyomi reading is used. When the character is read by itself
(a 1-gram) the kunyomi reading is used. For many characters,
it is difficult to predict which reading will be chosen.

The character underlined in Fig. 10(a) presents such a
case. It alternates between the onyomi reading “jing” and
the kunyomi reading “hito.” In the first sentence, the correct
reading is the kunyomi reading “hito” (the translation of the
sentence is, “Do work that is useful for people.”). In the
second sentence, the correct reading is the onyomi reading
“jing” (a slightly different usage; the translation of the sentence
is “There are no Japanese victims involved”). It is often
difficult to resolve such cases without additional contextual
information.

The second case, shown in Fig. 10(b), is an example of a
common problem in Japanese—counters. The first example
is “ju ichi nin” (in English, “eleven people”). The second
case is “hitori” (in English, “one person”). Depending on the
type of object being referred to, a number followed by an
object will be pronounced with a special ending. For example,
“ichi” is the word for “one,” but when counting long slender
objects such as pencils, we use “ippon no empitsu” for “one
pencil.” This type of problem is best handled by rules. Pattern
matching algorithms suffer from a combinatorial explosion
problem—every number for every type of object would need
to be handled.

Finally, there are cases where higher level contexts are
required. In Fig. 10(c), we present a reading of two characters
as “monaka” and “saichu.” In the first sentence, the correct
reading is “monaka” which is a bean-filled wafer (the sentence
means “I like monakas”). In the second sentence, the correct
reading is “saichu” which means “in the midst of” (the
sentence means “I am in the midst of working”). There is no
straightforward way of distinguishing the two readings without
some knowledge of the meaning of the sentence or syntactic
structure.

The second pair of sentences in Fig. 10(c) contains a similar
context-dependent case. The basic meaning of that kanji is
different in the two sentences: one means a wind, and it’s
pronounced “kaze” (“a cold wind is blowing.”); the other
means “style” and is pronounced “hu u” (“please don’t say
it in such a way”). Again, choosing the correct reading in this
case is quite difficult.

VI. SUMMARY

We have presented a high-performance kanji-to-hiragana
conversion algorithm. Its performance was shown to be su-
perior to three public domain algorithms on two extensive
evaluations. The algorithm currently handles a wide rage of
common kanji characters, and can be easily extended to more
difficult text by augmentation of its dictionaries.

We are still concerned about coverage in open-set testing.
As we gain more experience with wider varieties of text, we
will refine the dictionaries and minimize the number of entries
required. We are confident that most problems concerning

PICONE et al.: KANJI-TO-HIRAGANA CONVERSION 695

kanji-to-hiragana conversion can be dealt with, as we have
demonstrated in this paper. The only real limitation at this
point is the labor cost in augmenting the dictionaries. Reducing
the skill level required to augment the dictionaries goes a
long way toward minimizing labor costs while guaranteeing
consistency.

Ironically, most of the algorithms we have reviewed seem to
suffer from this same problem—inadequate dictionaries. The
reality is that kanji processing takes a lot of hard work. Most
of the tools we have seen, especially the public domain ones
in this paper, are very good, but do not have the investment
in time required to develop their dictionaries and rules. In
kanji processing, there is no real way around this—at some
point you must deal with a large exception dictionary. We feel
that our dictionaries are adequate for general tasks, but need
improvement mainly in exception cases such as proper nouns.

Finally, it is clear there is room for combining some level
of rule-based processing. One important area of research will
be to add a phrase analysis [25] and evaluate its usefulness.
We believe that the basic algorithm presented here is valid,
but can be improved somewhat through the addition of simple
phrase level information. The challenge will be to produce a
highly accurate segmentation algorithm.

REFERENCES

[1] D. H. Klatt, “Review of text-to-speech conversion for English,”J.
Acoust. Soc. Amer.,vol. 82, pp. 737–793, Sept. 1987.

[2] W. M. Fisher, G. R. Doddington, and K. M. Goudie-Marshall, “The
DARPA speech recognition research database: Specifications and sta-
tus,” in Proc. DARPA Speech Recognition Workshop,Feb. 1986, pp.
93–99.

[3] B. Wheatley and J. Picone, “Voice across America: Toward robust
speaker independent speech recognition for telecommunications ap-
plications,” Digital Signal Process.: Rev. J.,vol. 1, pp. 45–63, Apr.
1991.

[4] J. Picone, G. Doddington, and D. Pallett, “Phone-mediated word align-
ment for speech recognition evaluation,”IEEE Trans. Acoust., Speech,
Signal Processing,vol. 38, pp. 559–562, Mar. 1990.

[5] J. Picone, T. Staples, and N. Arai, “A phonetically balanced sentence
database for Japanese language continuous speech recognition,” Tech.
Rep. TRDC-TM-93-09, Texas Instruments, Tsukuba Res. Develop. Ctr.,
Ibaraki, Japan, June 1993.

[6] W. Hadamitzky and M. Spahn,Kanji and Kana: A Handbook and
Dictionary of the Japanese Writing System.Tokyo, Japan: Charles E.
Tuttle, 1981.

[7] H. I. Chaplin and S. E. Martin,Japanese: A Manual of Reading and
Writing. Tokyo, Japan: Charles E. Tuttle, 1987.

[8] Y. Ozaki et al., Daijigen (Large Character Sources). Tokyo, Japan:
Kadokawa, 1992, ISBN4-04-012800-1 C0581.

[9] K. R. Lunde, “Electronic handling of Japanese text,” Japan. Inf Version
1.2, Adobe Syst. Inc., Mountain View, CA, Mar. 1992.

[10] The X Window System.Sebastopal, CA: O’Reilly and Associates, May
1990, vols. 1–7.

[11] Unicode Consort.,The 1991 Unicode Standard: Worldwide Character
Encoding. Reading, MA: Addison Wesley, 1991, version 1.0, vol. 1.

[12] J. Gelb,A Study of Writing. Chicago, IL: Univ. Chicago Press, 1952.
[13] Y. Myoki, “General Japanese dictionary and morphemic analysis sys-

tem,” in Proc. 42nd Ann. Meeting of the Japan Information Process-
ing Society,1991, presented; JUMAN is available from the ftp site
sparta.nmsu.edu in the file /incoming/juman -mcc-92-11-05.tar.Z.

[14] M. Hagia et al., “An overview of GMW+Wnn system,” inAdvances
in Software Science and Technology.New York: Academic, 1989,
vol. 1, pp. 133–156; Wnn Version 4 is available from the ftp site
uwtc.washington.edu in the file /pub/Japanese/Unix/Wnn4.106.tar.Z.

[15] H. Takahashi, “KAKASI: Kanji kana simple inversion program,” ver-
sion 2.2.3, available from the ftp site uwtc.washington.edu in the file
/pub/Japanese/Unix/kakasi-2.2.3.tar.Z.

[16] S. Itahashi, “Research report on standardization of office automation
equipment,” Jpn. Electron. Ind. Develop. Assoc., Spec. Grp. Speech
I/O, p. 183, Mar. 1992, in Japanese.

[17] T. Fujisaki, “Segmentation and hiragana conversion of mixed kanji-
hiragana notation with dynamic programming,” Tech. Rep. Inform.
Process. Soc. Jpn. on Natural Lang. Process., nos. 28–35, Nov. 1981.

[18] K. Takeda and T. Fujisaki, “Automatic decomposition of kanji com-
pound words using stochastic estimation,”Trans. Inform. Process. Soc.
Jpn., vol. 28, pp. 952–961, Sept. 1987.

[19] S. Kaizuka, I. Hujino, and S. Ono,Chinese Character to Japanese
Dictionary. Tokyo, Japan: Kadokawa, 1991.

[20] Y. Koine et al., Eds., Eiwa: The Electronic Book Version.Tokyo,
Japan: Kenkyusha, 1990; available on CD-ROM in the Sony electronic
book format: ISBN4-7674-3500-5 C0582 P6200E.

[21] I. Shinmura, Ed.,Kojien: The Electronic Book Edition, Third Edition.
Tokyo,Japan: Iwanami, 1990; available on CD-ROM in the Sony
electronic book format: ISBN4-001311-7 C0800 P7725E.

[22] J. R. Deller, J. G. Proakis, and J. H. L. Hansen,Discrete Time Processing
of Speech Signals.New York: MacMillian, 1993.

[23] J. Picone, K. M. Goudie-Marshall, G. R. Doddington, and W. M. Fisher,
“Automatic text alignment for speech system evaluation,”IEEE Trans.
Acoust., Speech, Signal Processing,vol. ASSP-34, pp. 780–784, Aug.
1986.

[24] C. S. Meyers and L. R. Rabiner, “A level-building dynamic time warping
algorithm for connected word recognition,”IEEE Trans. Acoust., Speech,
Signal Processing,vol. 29, pp. 284–296, Apr. 1981.

[25] K. Shudo, T. Narahara, and S. Yoshida, “Morphological aspects of
Japanese language processing,” inProc. 8th Int. Conf. Computer Lin-
guistics,Tokyo, Japan, Oct. 1980, pp. 1–8.

Joseph Picone(M’83–SM’90) received the Ph.D.
degree in electrical engineering from Illinois Insti-
tute of Technology, Chicago, in 1983.

He is currently an Associate Professor in the
Department of Electrical and Computer Engineer-
ing, Mississippi State University, Mississippi State,
MS, where he also directs the Institute for Signal
and Information Processing. He was previously with
Texas Instruments, Dallas, TX, and AT&T Bell
Laboratories, Naperville, IL. His primary research
interest currently is the development of public do-

main speech recognition technology. He has published more than 90 papers
in the area of speech processing

Dr. Picone is a registered Professional Engineer. He is an Associate Editor
for IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING. He has been
awarded eight patents.

Tom Staplesreceived the B.S.E.E degree from the
University of Illinois, Chicago, in 1990.

From 1990 to 1992, he was a Researcher at
Nissan Motor Company’s Central Engineering Lab-
oratories, Yokosuka, Japan. From 1992 to 1993,
he was an Engineer at the Tsukuba Research and
Development Center, Texas Instruments, Tsukuba,
Japan. From 1993 to 1998, he was a consultant to the
Speech Research Branch, Texas Instruments, Dallas,
TX. He is currently with Nuance Communications,
Menlo Park, CA, where he is developing telephone-

based speech recognition technology.

696 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 7, NO. 6, NOVEMBER 1999

Kazuhiro Kondo (M’90) received the B.E. and
M.E. degrees in electrical engineering from Waseda
University in 1982 and 1984, respectively.

From 1984 to 1992, he was with Central Research
Laboratory, Hitachi Ltd., Tokyo, Japan. From 1992
to 1998, he was with Texas Instruments, Tsukuba,
Japan, where he conducted research into large vo-
cabulary speech recognition. In 1998, he joined
Conversational Computing Corporation, Redmond,
WA. He is now with Yamagata University, Japan.
His current research interests include conversational

speech recognition and multimedia signal processing.
Dr. Kondo is a member of the Acoustical Society of Japan and the Institute

of Electronics, Information, and Communication Engineers of Japan. He has
been awarded nine U.S. patents in the field of speech signal processing.

Nozomi Arai was with the Tsukuba Research and
Development Center, Texas Instruments, Tsukuba,
Japan, from 1991 to 1993, where she developed
language engineering resources to support the devel-
opment of Japanese speech recognition technology.
She was previously with Intel Corporation, Tokyo,
Japan, and is currently employed with Hilti Japan
Ltd., Yokohama, Japan.

